본문 바로가기

회원메뉴

상품 검색

장바구니0

Deepseek Shortcuts - The Easy Way > 자유게시판

Deepseek Shortcuts - The Easy Way

페이지 정보

작성자 Megan Wetherspo… 작성일 25-02-01 22:01 조회 6 댓글 0

본문

AA-20250127-36873090-36873084-DEEPSEEK-scaled.jpg Why is DeepSeek all of the sudden such a giant deal? It’s price emphasizing that free deepseek acquired a lot of the chips it used to prepare its model again when promoting them to China was still authorized. However, such a posh giant mannequin with many involved elements nonetheless has several limitations. The bigger model is more highly effective, and its structure is based on DeepSeek's MoE method with 21 billion "active" parameters. What the agents are product of: Lately, greater than half of the stuff I write about in Import AI includes a Transformer architecture model (developed 2017). Not right here! These brokers use residual networks which feed into an LSTM (for reminiscence) after which have some fully related layers and an actor loss and MLE loss. We’ve heard a lot of tales - most likely personally in addition to reported within the news - about the challenges DeepMind has had in changing modes from "we’re just researching and doing stuff we predict is cool" to Sundar saying, "Come on, I’m below the gun here. You can also use the model to automatically activity the robots to assemble data, which is most of what Google did right here.


photo-1738107450287-8ccd5a2f8806?ixlib=rb-4.0.3 Here is how you should utilize the GitHub integration to star a repository. This would not make you a frontier mannequin, as it’s usually outlined, nevertheless it can make you lead by way of the open-supply benchmarks. What Makes Frontier AI? 기존의 MoE 아키텍처는 게이팅 메커니즘 (Sparse Gating)을 사용해서 각각의 입력에 가장 관련성이 높은 전문가 모델을 선택하는 방식으로 여러 전문가 모델 간에 작업을 분할합니다. ‘공유 전문가’는 위에 설명한 라우터의 결정에 상관없이 ‘항상 활성화’되는 특정한 전문가를 말하는데요, 여러 가지의 작업에 필요할 수 있는 ‘공통 지식’을 처리합니다. DeepSeek-Coder-V2는 컨텍스트 길이를 16,000개에서 128,000개로 확장, 훨씬 더 크고 복잡한 프로젝트도 작업할 수 있습니다 - 즉, 더 광범위한 코드 베이스를 더 잘 이해하고 관리할 수 있습니다. 이전 버전인 free deepseek-Coder의 메이저 업그레이드 버전이라고 할 수 있는 DeepSeek-Coder-V2는 이전 버전 대비 더 광범위한 트레이닝 데이터를 사용해서 훈련했고, ‘Fill-In-The-Middle’이라든가 ‘강화학습’ 같은 기법을 결합해서 사이즈는 크지만 높은 효율을 보여주고, 컨텍스트도 더 잘 다루는 모델입니다. DeepSeek-Coder-V2는 이전 버전 모델에 비교해서 6조 개의 토큰을 추가해서 트레이닝 데이터를 대폭 확충, 총 10조 2천억 개의 토큰으로 학습했습니다.


소스 코드 60%, 수학 코퍼스 (말뭉치) 10%, 자연어 30%의 비중으로 학습했는데, 약 1조 2천억 개의 코드 토큰은 깃허브와 CommonCrawl로부터 수집했다고 합니다. 236B 모델은 210억 개의 활성 파라미터를 포함하는 DeepSeek의 MoE 기법을 활용해서, 큰 사이즈에도 불구하고 모델이 빠르고 효율적입니다. DeepSeek-Coder-V2 모델은 컴파일러와 테스트 케이스의 피드백을 활용하는 GRPO (Group Relative Policy Optimization), 코더를 파인튜닝하는 학습된 리워드 모델 등을 포함해서 ‘정교한 강화학습’ 기법을 활용합니다. GRPO helps the mannequin develop stronger mathematical reasoning abilities while additionally improving its memory usage, making it more efficient. As the sphere of large language models for mathematical reasoning continues to evolve, the insights and techniques introduced in this paper are more likely to inspire further advancements and contribute to the event of much more capable and versatile mathematical AI techniques. The implications of this are that more and more powerful AI techniques mixed with nicely crafted knowledge era eventualities could possibly bootstrap themselves beyond natural knowledge distributions. Chances are you'll have to have a play around with this one. Encouragingly, the United States has already began to socialize outbound funding screening on the G7 and can be exploring the inclusion of an "excepted states" clause just like the one below CFIUS.


This is a kind of things which is both a tech demo and likewise an essential signal of things to return - sooner or later, we’re going to bottle up many alternative elements of the world into representations realized by a neural internet, then enable these things to come back alive inside neural nets for limitless technology and recycling. Read extra: Good things are available small packages: Should we undertake Lite-GPUs in AI infrastructure? Read extra: A Preliminary Report on DisTrO (Nous Research, GitHub). But maybe most considerably, buried within the paper is a crucial insight: you possibly can convert pretty much any LLM right into a reasoning model for those who finetune them on the fitting mix of information - right here, 800k samples displaying questions and solutions the chains of thought written by the mannequin whereas answering them. This means the system can higher understand, generate, and edit code in comparison with earlier approaches. DeepSeek-Coder-V2 모델은 수학과 코딩 작업에서 대부분의 모델을 능가하는 성능을 보여주는데, Qwen이나 Moonshot 같은 중국계 모델들도 크게 앞섭니다.



In case you liked this post as well as you desire to be given guidance about ديب سيك generously visit the web page.

댓글목록 0

등록된 댓글이 없습니다.

회사소개 개인정보 이용약관
Copyright © 2001-2013 넥스트코드. All Rights Reserved.
상단으로